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The problem of factor score estimation may be introduced by discussing briefly

the classical factor analysis model, which may be expressed in matrix terms as:

Z' = rs' + us' (1)

where Z' = (pxN) raw data matrix scaled to have column means of zero and column
standard deviations of unity, where p = the number of observed variates
and N = the number of individuals or entities.

F = (pxm) or-loading matrix for m derived common factors.

S° = (mxN) matrix 0, .dividual scores on the derived common factors, usually
referred to as the common factor score matrix.

U = (pxp) diagonal matrix whose non-zero entries identify standard deviations
of the derived uniqueness variable:,

S' = (pxN) matrix of individual score :, on the associated unique factors, us-
ually referred to as the uniqueness factor score matrix.

The model may be classified as an additive, linear model (Thurstone, 1947);

equation (1) indicates that data can be represented as a sum of common portions

(FS') and unique portions (US'). In general, the derived common factors may be corr-

elated or uncorrelated. The derived uniqueness variables are assumed to be uncorrela-

ted among themselves and with the common variables. These assumptions may be repre-

sented algebraically in matrix terms as: S'S = I, and S'S = 0. For present purposes
u u c u

it will also be reasonable to treat common factors as mutually uncorrelated. that is,

S'S = I.
c c

Common portions of data, i,e., FS' in equation (1) are in general unobservable.

Hence, at best it is possible to estimate common factor scores. Geometrically the

problem of estimation becomes apparent. The usual geometric mod for factor analysis

represents the n tests as a bundle of unit-length vectors embedded in an N-dimension-

al Euclidean space. The derived common factors are represented as a set of m linear-

ly independent vectors embedded in the same N-space. But these common factorvectors

are outside the space determined by the origin and the end points of the test vec-

tors. Estimates of common factor scores which are based on observed variates are thus

often poor because they are based on information within the space of test variables

(Heerman, 1964:Thomson,1951).
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Theoretical speculation has led to the construction of several methods for es-

timating factor and component scores. These procedures have been largely developed

within a least-squares regression framework. That is, several investigators have

approached the problem of estimating common factor scores by first estimating F and

U2 for some selection of m less than R, and then deriving tue factor measurements

using some form of least-squares analysis treating the estimates of F and U as

though they were equal to corresponding population values (see Horst, 1965). Since

S in equation (1) equals the (Nxm) matrix of common factor score measurements, let

/fa,

represent the (Nxm) matrix of corresponding estimated factor scores, and B tap-

resent the (pxm) matrix of estimation or regression weights. The general problem of

estimation for these different least-squares methods may be expressed in matrix terms

as: S
c
= ZB, where B depends on F and U alone, and is chosen in the case of each

factor score estimation procedure to minimize certain errors of estimation.

McDonald and Burr (1967) presented the formal properties of four least-squares

estimation methods and compared these properties with respect to four generally de-

sirable properties of estimated factor scores. In essence they developed the ration-

ale for estimation and described the differences among estimates given by these pro-

cedures with respect to theoretical criteria such as orthogonality, univocality, and

conditional unbiasedness, which are discussed below. Harris (1967) discussed these

same procedures and added a fifth (relatively crude) procedure that is often used or

recommended, but is not generally considered as a standard method of estimation.

The four desiranle properties of estimated factor scores which were discussed

by McDonald and Burr are that: (a) estimated factor scores should approximate the

associated true factor scores as closely as possible, i.e., the diagonal elements of

the (mxm) matrix of cross-correlations between true and estimated scores should ap-

proximate unity; (b) the set of m estimated score vectors should be mutually orthog-

onal: (c) each vector of estimated factor scores should correlate zero with each vec-

tor of non-corresponding true factor scores (this condition identifies univocal

factor scores; see Guilford and Michael, 1943); and (d) the estimated factor scores



Ambrosino, p. 3

should be conditionally unbiased estimators of corresponding true factor scores.

Apparently, the choice of initial factoring method makes a diff;rence in the

estimation of factor score measurements. Ilarris (1967) and McDonald and Burr (1967)

indicated that the choice of canonical, factor analysis (Rao, 1955) as the initial

factoring method produces estimated factor scores with particularly desirable prop-

erties. Canonical factor analysis is a special case of maximum likelihood factor an-

alysis (JOreskog, 1967. Lawley, 1940; Rao, 1955). Browne (1968) discussed the prop-

erties of several factor analytic techniques and made an empirical comparison of re-

sults given by these techniques. He indicated that in general, estimates of factor-

loadings given by the maximum likelihood method are theoretically preferable be-

cause they are asymptotically efficient and there is a corresponding likelihood

ratio test for assessing the fit of the factor model. His results, together with

those of Barris and McDonald and Burr, suggest that maximum likelihood factor an-

alysis provides a desirable basis for estimation of factor measurements.

Trites and Sells (1955) compared the unit weighted method and the fractionally

weighted method for estimating factor scores, using correlation coefficients. The

two methods gave practically identical results. From the standpoint of computation,

the unit weighted method was the simpler and it was concluded that this was the more

desirable of the two methods for practical applications. Baggaley and Cattell (1956)

des2ribed certain exact and linear function estimates of oblique factor scores and

discussed the conditions under which they were appropriate. They showed the extent

of approximation in using factor-loadings in place of the exact regression weights

in a 15 factor, 70 variable, 295 person problem. The correlations between the true

and estimated scores ranged from .67 to .94 for the approximate procedure. Moseley

and Klett (1964) empirically compared the results given by three methods of factor

score estimation. Their results indicated that each of the methods were roughly eq-

uivalent insofar as the intercorrelations among score estimates and reliabilities

were concerned, Horn (1965) described and empirically compared exact and approximate

procedures for estimating factor scores, using coefficients of congruence (Tucker,
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1951). His exact procedures, i.e., those which use some form of Last- squares anal-

ysis, were correlated above .90 with o:-.e another. His approximate procedures, i.e.,

those which do not use a least-squares analysis, also correlated above .90 with one

another. Wackwitz and Wrrn (1971) compared estimates given by exact and approximate

procedures to true (population) factor scores, using a variety of criteria for com-

parison. Their results indicated that the weighted salients method (Horn, 1965) pro-

duced score estimates more closely matching associated true factor scores than any

of the other methods of the study. As can be seen, there appears to have been little

empirical research involving the estimation of indlvidual factor measurements.

There appears to be practical value in comparing the results given by different

estimation procedures with respect to indices such as predictive validities and the

amount of shrinkage to be expected when these validities are examined with cross-

validation procedures. The aim of this study was to compare four procedures for es-

timating common factor measurements using artificially synthesized "data" matrices.

In essence, two major questions were raised: (a) how well will the factor score es-

timates derived using the four procedures approximate associated true factor scores

which are availablft from the data simulation procedures? and (b) what will be the

extent of shrinkage in the canonical correlations when the validities of estimates

derived using the four estimation procedures are examined by cross-validation pro-

cedures?

Methodology

Data Simulation

Data for this study were computer simulated using the classical factor analysis

model as represented by equation (1). Eight simple structure factor-loading matrices

F were used to develop C7,e common and unique portions of the population data for Ns

of 200 and 300. Each of these Fs was chosen from the factor analysis literature with

respect to a variety of criteria such as simplicity of loadings, sizes and variabil-

ities of communalities, and ratio of factors to variables (see Table 1). Common and
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unique factor scores were generated for the population to fit the standard assump-

tions of mutual and joint orthogonality.

INSERT TABLE 1 ABOUT HERE

Generating the Cross-Validation Samples

For each combination of F and N, the cross-validation sample pairs served as

the data base for the estimation of factor scores. These were determined by randomly

splitting the (Nxp) population data matrix Z into two (nxp) halves, where n = N/2.

For an appropriate permutation of columns, Z' Z' 'Z' . The synthetic data Z and
a' h. -a_ -

Z were represented as Z = FS' + US` , (k = a,b). While S do not in general
`b ck uk Mk
possess the (exact) properties of true (common and unique) parts described above,

they were, nevertheless, taken as one representation of common and unique factor

scores for the respective half samples. The use of half-sample data of this form is

not inconsistent with the approach taken in many applications of factor analysis

where it is assumed that a population data matrix fits the common factor model but

that samples of observation vectors taken from this population may fit the model

only approximately.

Factoring Method

In the case of each population of data, Z
a

and Z
b

were used to generate correl-

atir 1 matrices which served as starting points for maximum likelihood factor analy-

sis. Maximum likelihood factor analysis (Lawley, 1940) was chosen as the factoring

method of this study because the theoretical properties of factor scores derived

using this method are relatively well understood (Harris, 1967; McDonald and Burr,

1967). Computer program U/TLFA (unrestricted maximum likelihood factor analysis, Jor-

eskog, 1966) was used to obtain the maximum likelihood estimates of factor-loadings

and uniqueness variances used in the factor score estimation. UMLFA provided initial

(untransformed) estimates of factor-loadings, F (k = a,b), and orthogonally (using

varimax, Kaiser, 1958) transformed versions, 4, for each selection of a number of

factors, m. This study used derived orthogonal solutions (Fs of the form FoT, for
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F an untransformed solution) because this made it possible to make direct compar-
o

isons of F and F to one another and to the corresponding F which was used in data
-A -13

simulation. In this serse it seems reasonable to use the sets of zero-order correla-

tions computed between resulting matched vectors of true and estiMated factor scores

as one criterion for examining predictive validities.

Factor-Score Estimation

The reader will recall that for each combination of F and N, the cross-

validation sampl- pairs, Z
a

and Z
-b

served as the data base for factor score estima-

tion. The methods chosen for estimating factor measurements may be identified with

respect to the following formulas:

/1\ "
Slk ZkA Fk(Fk

k)'1 Horst (1965)

/' 2" " 1^-2"
k

-1S
2k k

= Z U- F (F
k
U F ) Bartlett (1937)kk k

=
&k

2/P 1ck )-1/2 Anderson and Rubin (1956)
A3k kk

S
4k

ZkFk Horn (1965)

(2)

(3)

(4)

(5)

F
k
and Uk (k = a,b) represent the maximum likelihood estimates of the corres-

ponding population F and U in the case of each sample of data. R is the variance-

"
covariance (or correlation) matrix associated wi*h Z and F.

The S (j = 1,2,3,47 k = a,b) are matrices of order (nxm) and may be express -
1k

ed alternately as Sjk = ZkEjic, where the E are (pxm) matrices of estimation
jk

weights corresponding to that portion to the right of the Z
k

matrix in (2) - (5).

The Horst, Bartlett, and Anderson and Rubin methods were selected with refer-

ence to the theoretical factor score properties discussed by McDonald and Burr.

In general, regardless of initial factoring method used, the Horst and Bartlett es-

timates are univocal and conditionally unbiased estimators of corresponding true

scores. Anderson and Rubin estimates are in general orthogonal. What has been termed

the Horn method was included in this study because it represents a quick and con-

venient means of estimation which is sometimes used or recommended for general app-

lications (Horn, 1965; Wackwitz and Horn, 1971).
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Examination of Validities

A. Two criteria were used to examine the quality of estimates for each method

of estimation, in the case of each sample of data: (1) the set of m zero-order

correlations (r ) computed between the corresponding vectors of estimated scores
te

identified as S (j = 1,2,3,4; k = a,b) and true scores identified as S ; and (2)
jk ck

the set of m canonical correlations (R i = I,2,...,m) computed between the (op-
-ci

timaily) linearly weighted composite of estimated scores, S
is%

and the (optimally)
jk

linearly weighted composite of true scores, S , For the latter, the (undeviated)
ck

root mean square, written HMS = m ) Rc 2 1/2, was computed as a summary index of

predictive validity,

B. A (double) cross-validation paradigm was employed to examine the stability

of estimates given by the four procedures. The following notation is designed to

facilitate an understanding of these cross-validation procedures. In the case of

each population of data, considerZ
k

as the hypothesis-genere.ting sample and Z
k

as
'

the corresponding validation sample (k' = b if k = a, k' = a if k = b). Factor

score estimates, S (j = 1,2,3,4) and estimation weights, E were calculated for
-jk jk

the initial or hypothesis-generating sample. RMSs were calculated for canonical

correlations computed between initial factor score estimates, S and true scores,
jk

SS.

The E derived using the initial or hypothesis-generating sample were then
-jk

applied to the data of the corresponding validation sample, creating four new sets

of (cross-validity) factor score estim tes identified as S = ZkEik,. RMSs were
jk

calculated for canonical correlations computed between cross-validity estimates,

S and true scores, §_ck. The reader may wish to refer to Figure 1, which is a sche-
-jk

matic diagram of the cross-validatior procedures described above.

INSERT FIGURE I ABOUT HERE

The shrinkage between RMSs computed for each method identified as S and S
-jk -jk

corresponds to the stability of the estimates based on the initial hypothesis-
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f\
generating sample Z

k
(Note- when F

k
and U are closer approximations to the corres-

/\ P\
ponding population F and U than are Fk; and 1.7 MISs computed for estimates based

on weights given by E will be higher than those computed for estimates based on
Jk

weights given by E . That is, the (direction of) shrinkage will be positive. If,

/Oki
however, F and U provide the closer approximations to F and U, then it is poss-

k'

ible to have negative shrinkage. That is, =Ss computed for estimates bas-d on the

validation sample weipts, E will be higher than those computed for estimates

based on weights given by the original hypothesis-generating sample. Thus, in the

sense that negative shrinkage can be observed here, the present study is an uncon-

ventional cross-validation study).

Results

Several summary statistics based on results from each of the comparisons noted

above, are presented below for each method of estimation and for each selection of

F and U, and for all values of m/p, the ratio of the number of fa::tors to the num-

ber of variables for the respective solution. These statistics allow the reader

readily to examine for himself the quality of estimates given by the different me-

thods with respect to the factor score criteria of this study.

For each estimation method and for each combination of F and N, the following

summary statistics are given (1) the ave,:age zero-order correlation (r ) between
to

the true and estimated factor scores; (2) the average canonical root mean square

(RNS), which is included as a surmary index of predictive validity; and (3) the av-

erage residual between the cancaical root mean square (RHS ) computed for the hy-
r

pothesis-generating and the validation estimates. All averages are simply unweight-

ed means computed across results for both halves of data.

Tables 2 - 5 include these summary statistics. Each table contains statistics

for a single estimation method. The reader should recognize that a single (small

value) selection of m was always used when II = 200. The final (row) entries in each

table represent (unweighted) averages for each statistic, computed across all the

initial Fs included. Although different combinations of row complexities, (sizes
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and variabilities of) communalities and ratios of factors to variables were repre-

sented, it seems reasonable to summarize results using these composite statistics.

For all these tables, there are no entries for the Browne (1958) data with N = 200

and m = 3, for the Overall and Porterfield (1953) data with N = 200 and m = 3, and

for the entire Conry (1965) data. For no clearly apparent reason, the L s, canon-
te

ical Rs and root mean squares computed for these data were extremely small. Thus,

these data were censored for this summary in view of the writer's belief that these

data sets are not generally comparable with the resr.

The data of tables 2,3, and 4 indicate that the Horst, Bartlett and Anderson

and Pubin methods gave what may be judged as satisfactory results for each combina-

tion of F and N with respect to the estimates approximating associated true scores

and with respect to cross-validational shrinkage. Inspection of tables 2 - 5 indi-

Lales that there were only small differences among these summary statistics given

for N 200 and i1 = 300, when using the same ratio of factors to variables.

Perhaps the most striking observation from these tables is the degree of sim-

ilarity of results for the first three methods of factor score estimation and the

finding of essentially no shrinkage for these methods. Had the ratio of sample to

population size, n/11 been smaller, the probability of negative shrinkage wculd no

doubt have been lowered7 that negative shrinkage was occasionally found for sam-

pling ratios of 1/2 clearly does not imply that opposite sample Fs will produce

higher cross-sample validities in general. Nevertheless. it at least seems reasonable

to suggest that score estimates based on the first three methods are apt to be rel-

atively stable far many applications.

Another finding which is mnnifes:. from a study of the summary tables is that

average r s or RriSs for the individual Fs are quite highly correlated with the av-
tv

erage commonalities for these Fs. This is of course not surprising. The one point

that is interesting, however, is that i s are greate than .70 despite the fact
te

that the smallest average communalities are about .50. Highest levels of r , about
te

.90 were reached for the F matrix from the work of Wiggins and Lovell (1965), the
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average communality for which was .69.

One fact that war, initially unsettling is that, depending on the population F,

the RIISs sometimes increased and sometimes decreased as the ratio, m/p was increas-

ed. For the Browne, Overall and Porterfield and Wiggins and Lovell Fs, it is seen

that Miss increase markedly as m/p is increased. But for the Bechtoldt (1961) and

the Emmett (1949) data, the opposite effect occurs; as the half-sample m/p ratio is

increased to the population ratio, the RNSs dec-rease. The reason, apparently, is

that for the latter vsiro data sets (Bechtoldt and Emmett), population Fs have rel-

atively lower complexity rows for an orthogonal solution than do the three former

sets. It is suggested that when the sample ratios m/p were set to be smaller than

the population ratio far the complex Fs of Browne, Overall and Porterfield and

Wiggins and Lovell data, the maximum likelihood factoring procedure resulted in de-

rived half-sample Fs whose columns may not have clearly matched any of those of the

associated population that the half-sample Fs were instead "stretched" across

the true common space. As the sample ratio m/p was increased to the population

ratio, for the more complex data, the individual factors tended better to match the

population factors, thus the WISs reached their highest values for largest m/p

ratios for these data.Perhaps the conclusion that one ought to make in this context

is that FEV3s associated with the largest values of m/p are the ones which ought to

be given primary attention for interpretation of all methods. When one compares the

four methods using these rows alone, however, the same general conclusions are

reached about the relative merits of these four methods of estimation. This can be

seen by insnecting the final row entries of each of these tables.

As must be true hosed on analytical study, the average root mean square

statistic (RMS) was identical for both the Horst and the Horn methods and for both

the Bartlett and Anderson and Rubin methods, across the different specifications

of F included in these tables. However, as can be seen from tables 2 cind 5, the

true-estimated correlations were distinctly lower for the Horn method than for the

Horst method within each half sample for each specification of F and N.
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Despite the fact that the Born method appeared to give what may be judged as

satisfactory true-estimated correlations and canonical root mean squares, the cross -

validational procedures showed this method to yield highly unstable estimates. As

can be seen from table 5, the cross-validational shrinkage was substantially higher

for this method across all specifications of F and N, than the shrinkage for the

other three methods. Recalling information from table 5, the extent of shrinkage was

generally low for the first )r larger factors, but extremely high for the subsequent

factors, when using what has been termed the Horn method.

No noticeable patterns in the results given by the four estimation methods were

observed between Ns of 200 and 300, across all specifications of initial population

Fs. Apparently, the difference in size of N was not large enough to produce a no-

ticeable effect for these data.

INSERT TABLES 2-5 ABOUT HERE

Conclusions

Based on the results presented above, the following general conclusions may be

drawn. The first three methods of this study (Horst, Bartlett and Anderson and Rubin)

gave practically identical results with respect to approximating true factor scores

and with respect to cross-validational shrinkage. Each of these methods gave what

may be judged as satisfactory results for these (artificial) populations of data. It

has been shown that for general applications, it is not unreasonable to expect vec-

tors of estimated factor scores based on any of the first three methodr1 of this study

to correlate upwards of .70 with underlying true factor scores when average commun-

alities for tip: initial popu]ation Fs are above .50.

Despite the fact tha, the crude method attributed to Horn appeared to give

satisfactory within sample true- estimated correlations and canonical root mean

squares; the cross-validational procedures of this study showed this method to yield

highly unstable estimates. The conclusion here, is that the method of selecting

columns of F to be used as weights for estimating factor measurements cannot be re-

commended for general applications since this procedure consistently provided highly
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unstable estimates.

Extensions which might be considered in future studies of the present type in-

elude the following: A single cross-validation sample pair (Z and Z ) was analyzeda b

for each combination of F and N. In this study, the objective was to examine a wide

variety of Fs and selections of m and N, on the assumption that point estimates of

validity coefficients would suffice for the inter-method comparisons of the diff-

erent methods for estimating factor scores. Studies which included several cross-

validation sample pairs in the case of each population of data, would make it poss-

ible to generate approximations to the distributions of validities and shrinkage for

each of several estimation methods across all selections of F and N.

To provide a greater opportunity to observe the effect of sample size on the

quality of estimates given by the four respective methods, future studies might in-

clude a wider variety of Ns, for example, N = 200, 500, 700, and 1000. A larger set

of Ns would also make it possible to generate cross-validation samples whose sam-

ple sizes were some fraction of the initial population size other than one half. For

each of the Ns in this expanded set, the analyses of future studies probably should

include only those selections of m that are equal to the number of factors for the

associated population F.
/*

It might be interesting to include other common factor solutions to derive F
a

and F for the different specifications of F and N. Normal varimax was used to ob-
b P

tain the orthogonally transformed versions of F and F in the case of each sample
a

of data. This transformation algorithm had also been used to derive several of the

initial population Fs. Oblique transformations (see Harris and Kaiser, 1964;

Hofmann, 1970) perhaps ought to be investigated in future studies of this kind.

Of course, further variations on the present theme could take on many forms.

Vultivariate analysis typically involves the estimatl-m of so many parameters that

one cannot in a single study vary all relevant dimensions of parameter investaga-

tion. While analytical studies are clearly essential for methodological progress,

studies of the present variety appear to have considerable value for refining know-



Ambrosino, p. 13

ledge and for making judgments about practical uses of quantitative methods.
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TABLE 1

Sources for F Matrices Which Were
Used in Construction of Population Data

Source for F X
h2 h2

m/p

Bechtoldt (1961) .661 .158 6/17

Browne (1968) .472 .299 4/12

Conry (1965) .657 .130 6/17

Emmett (1949) .639 .140 4/9

Harman (1967) .500 .140 4/20
Maxwell (1961) .535 .230 4/10

Overall-Porterfield (1963) .673 .080 5/15

Wiggins-Lovell (1965) .694 .110 3/13



TABLE 2

Summary Ststistics for the Horst (1965)
Classical Least-Squares Ttethod of Estimation

F m/p
-
r
te

R; IS

N = 200

-
r

te

PMS i

r I

--
RMS RMS

r

N = 300

Bech- 4/17 .893 .900 .004 .888 .897 -.002
toldt 6/17 .883 .895 -.015

Browne 3/12 .822 .814 .003
4/12 .798 .851 .000

Emmett 2/9 -847 .856 -.00C .348 .854 -.002
3/9 .801 .828 -.008
4/9 .622 .733 -.003

Harman 2/20 .775 .782 -.001 .787 .794 .002
3/20 .706 .765 .001
4/20 .818 .843 -.001

Maxwell 3/10 .736 .780 -.006 .762 .798 .007
4/10 .740 .808 -.010

Overall- 3/15 .828 .856 .002
Porter. 5/15 .905 .923 .001

Wiggins- 2/13 .874 .384 -.001 .888 .892 -.002
Lovell 3/13 .932 .936 .000

Average .825 .340 -.002 .814 .852 -.002
(.814) (.870) (-.005)

7ote - Entries in parentheses are those averages -,mputed for selections of the
sample ratio, m/p, that was equal to the ratio, m/p, for the respective
population F.



TABLE 3

Summary Statistics for the Bartlett
(1937) Method of Estimation

F m/p r

te
RMS

N e 200

---
PMS

te

RMSMIS

N 300

Bech- 4/17 .893 .901 .005 .891 .898 .008
toldt 6/17 .855 .870 -.006

Browne 3/12 .772 .816 .007
4/12 .812 .825 .007

Emmett 2/9 .853 .860 -.002 .854 .860 -.002
3/9 .792 .824 .001
4/9 .586 .723 .008

Harman 2/20 .791 .800 -.003 .762 .786 .005
3/20 .686 .767 -.004
4/20 .817 .841 -.004

Maxwell 3/10 .724 .768 -.012 .754 .779 -.001
4/10 .726 .806 -.016

Overall- 3/15 .838 .861 -.001
Porter. 5/15 .905 .924 .000

Wiggins- 2/13 .879 .888 -.003 .898 .904 -.004
Lovell 3/13 .935 .937 -.002

Average .823 .843 -.002 .805 .839 .000
(.806) (.846) (-.002)



TABLES

Summary Statistics for the Anderson and Rubin
(1956) Method of Estimation

F

Bech-
toldt

Browne

Emmett

Harman

Maxwell

Overall-
Porter.

Wiggins-
Lovell

-
m/p r RMS iFfS

te
N a 200

r RMS RMS
te

N 300

4/17 .898 .901 .005
6/17

3/12
4/12

2/9 .814 .860 -.002
3/9
4/9

2/20 .790 .800 -.003
3/20
4/20

3/10 .734 .768 -.012
4/10

3/15
5/15

2/13 .680 .888 -.003
3/13

.895 .898 .008

. 864 .870 -.006

.807 .816 .007

. 816 .825 .007

.856 .860 -.002

.805 .824 .000

.556 .723 .008

. 741 .786 .005

.695 .767 -.004

.826 .841 -.004

.767 .790 .010

.751 .806 -.016

.838 .861 -.001

.907 .924 .000

.898 .904 -.005

.935 .937 -.00.2

Average .323 .842 -.003 .810 .840 .000
(.808) (.346) (-.002)



TABLE 5

Summary Statistics for the Horn (1965)
Method of Estimation

F m/p r
te

RMS

N = 200
te

N = 300

RMS RMS

Bech- 4/17 .744 .900 .372 .748 .897 .208
toldt 6/17 .680 .895 .228

Browne S'1.2 .831 .814 .272
4/12 .785 .852 .309

Emmett 2/9 .743 .856 .279 .743 .371 .294
3/9 .706 .835 .285

Harman 2/20 .607 .782 .091 .648 .794 .196
3/20 .619 .765

1 4/20 .668 .843 .328

Maxwell 3/10 .712 .780 .209 .710 .798 .197

4/10 .666 .808 .284

Overall- 3/15 .820 .853 .099
Porter. 5/15 .876 .923 .181

Wiggins- 2/13 .861 .884 .872 .892
Lovell 3/13 .894 .936 .206

Average .733 .840 .237 .764 .852 .223

(.754) (.870; (.231)

Note - Asterisk identifies those cases where the RMS was not calculated for the
validation estimates and therefore no residual was found.
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